

O objetivo do Manual de

Filtragem Hidráulica é

familiarizar o usuário com

todos os aspectos da

filtragem do óleo hidráulico e

lubrificante, desde a

tecnologia básica até a

avançada.

O propósito deste manual é
ser uma fonte de
referência, apresentando de
forma clara e abrangente o
assunto ao usuário, não levando em conta o nível de
conhecimento do mesmo.

A escolha e o uso apropriado dos dispositivos hidráulicos é uma ferramenta importante na busca de aumentar a produção enquanto se reduz os custos da manufatura. Este Manual ajudará o usuário a tomar decisões bem fundamentadas sobre a Filtragem Hidráulica.

ÍNDICE

Seção	Página
Bases da Contaminação	2
Tipos e Fontes de Contaminação	4
Padrões de Limpeza do Fluido	12
Tipos e Graus de Meios Filtrantes	16
Escolha do Meio Filtrante	20
Vida do Elemento Filtrante	22
Escolha do Filtro	24
Tipos e Localizações dos Filtros Tipos e Fontes de Contaminação	28
Análise de Fluidos	32
Apêndice	34

Bases de Contaminação

Filtragem - Fato

O projeto adequado, a instalação e a filtragem hidráulica têm um papel chave no planejamento da manutenção preventiva.

Filtragem - Fato

A função de um filtro

não é limpar o óleo mas

reduzir custos operacionais.

A Contaminação causa a Maioria das Falhas Hidráulicas

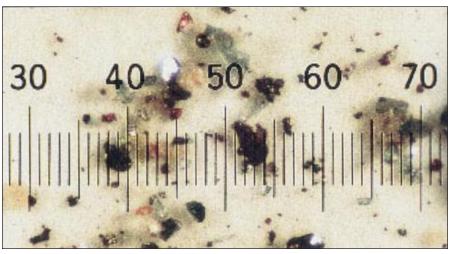
A experiência de projetistas e usuários de sistemas de óleos hidráulicos e lubrificantes tem demonstrado o seguinte fato: mais de 75% das falhas de sistemas são resultantes diretas da contaminação.

O custo devido a contaminação é de estarrecer, resultante de:

- ▼ Perda de produção (paradas)
- ▼ Custos de reposição dos componentes
- ▼ Reposição frequente do fluido
- **▼** Baixa vida dos componentes
- ▼ Aumento dos custos da manutenção geral
- ▼ Aumento do índice de sucata

Funções do Fluido Hidráulico

A contaminação interfere em quatro funções do fluido hidráulico:


- 1. Atuar como um meio de transmisão de energia.
- 2. Lubrificar as partes internas dos componentes.
- 3. Atuar como um meio trocador de calor.
- 4. Preencher a folga entre os componentes móveis.

Se uma destas quatro funções for impedida, o sistema hidráulico não se desempenhará conforme projetado. O resultado da parada pode facilmente custar muito mais do que imaginado por hora de manufatura. A manutenção do fluido hidráulico ajuda a prevenir ou reduzir a parada não planejada. Isto é conseguido através de um programa contínuo de melhoria que minimiza e remove os contaminantes.

Danos do Contaminante

- ▼ Bloqueio dos orifícios
- ▼ Desgaste dos componentes
- Formação de ferrugem ou outra oxidação
- Formação de componentes químicos
- ▼ Deficiência dos aditivos
- ▼ Formação de contaminantes biológicos

O que se espera do fluido hidráulico é que ele crie um filme lubrificante para manter as peças de precisão separadas. O ideal é um filme fino o suficiente para preencher completamente a folga entre as peças.

Fotomicrográfica da partícula contaminante. (Ampliado 100x Escala: 1 divisão = 20 mícrons)

Bases de Contaminação

Esta condição resulta em baixo índice de desgaste. Quando o índice de desgaste é mantido baixo o suficiente, o componente pode alcançar sua expectativa de vida, o que pode ser milhões de ciclos de pressurização.

A espessura de um filme lubrificante depende da viscosidade do fluido, carga aplicada e velocidade relativa das duas superfícies. Em muitos componentes, cargas mecânicas são extremamente altas que comprimem o lubrificante em um filme fino, com espessura menor que 1 mícron. Se as cargas forem altas

que excedam ao limite, o filme será perfurado pela aspereza da superficie de duas peças em movimento. O resultado contribuirá para uma fricção desgastante.

Folga Típica de Componentes Hidráulicos				
Componente	Mícrons	ı		
Rolamentos anti-fricção de		ı		
rolos e esferas	0.5	ı		
Bomba de Palheta	0.5-1			
Bomba de Engrenagens (engrenagem		ı		
com a tampa)	0.5-5	l		
Servo Válvulas (carretel com a luva)	1-4			
Rolamentos hidrostásticos	1-25			
Rolamentos de Pistão (pistão com				
camisa)	5-40			
Servo Válvula	18-63			
Atuadores	50-250			
Orifício de Servo Válvula	130-450			

Tamanho Relativo das Partículas					
Substância	Mícrons	Polegadas.			
Grão de sal refinado	100	.0039			
Cabelo humano	70	.0027			
Limite máx. de visibilidade	40	.0016			
Farinha de trigo	25	.0010			
Células verm. do sangue	8	.0003			
Bactéria	2	.0001			

Escala Micrômetro

Os tamanhos das partículas geralmente são medidos em uma escala micrométrica. Um micrômetro (ou "mícron") é uma milionésima parte de um metro ou 39 milionésimos de uma polegada. O limite da visibilidade humana é aproximadamente 40 mícrons. Tenha em mente que a maioria das partículas que causam danos aos sistemas de lubrificação ou hidráulicos são menores que 40 mícrons. Portanto, elas são microscópicas e não podem ser vistas a olho nu.

Filtragem - Fato

O fluido novo não é necessariamente um fluido limpo.
Tipicamente, um fluido novo
tirado do tambor não é
próprio para ser usado em
sistemas hidráulicos ou
lubrificantes.

Filtragem - Fato

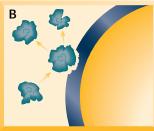
Aditivos em fluidos
hidráulicos são geralmente
menores que 1 mícron e
são insensíveis aos
métodos de filtragem
padrão.

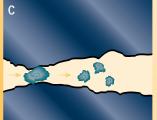
Contaminação da Partícula

Tipos

A contaminação por partículas geralmente é classificada como sedimento ou pequenas partículas. Sedimento pode ser definido como o acúmulo de partículas menores que 5µm. Este tipo de contaminação também causa falha no sistema/componente ao decorrer do tempo. Por outro lado, as pequenas partículas são contaminantes maiores que 5µm e podem causar falhas catastróficas imediatas. Sedimento e pequenas partículas podem ser classificadas como:

Partículas Duras


- ▲ Sílica
- ▲ Carbono
- ▲ Metal


Partículas Maleáveis

- ▲ Borracha
- ▲ Fibras
- ▲ Microorganismos

Danos

- A. As interações mecânicas de três corpos podem resultar em interferência.
- **B.** O desgaste de dois corpos é comum em componentes hidráulicos.
- C. Partículas duras podem criar um desgaste entre três corpos para gerar mais partículas.

Se não forem adequadamente absorvidos, os contaminantes da manufatura ou montagem serão deixados no sistema.

Estes contaminantes incluem sujeira, respingo de solda, partículas de borracha de mangueiras e vedações, areia de fundição e sedimentos de metal dos componentes usinados. Também quando o fluido é inicialmente adicionado ao sistema, a contaminação é introduzida. Durante o sistema de operação a contaminação entra através das tampas de respiro, vedações gastas e outros sistemas de abertura. A operação do sistema também gera contaminação interna. Isto ocorre quando o desgaste do sedimento do metal e os produtos químicos reagem com as superfícies dos componentes para gerar mais contaminação.

Fontes

- ▼ Formada durante os processos de manufatura e montagem.
- ▼ Adicionado com novos fluidos.
- ▼ Inserção externa durante a operação.
- ▼ Gerado internamente durante a operação (veja quadro abaixo).

Contaminante Gerado

Desgaste Abrasivo - partículas duras ligando duas superfícies em movimento, desgastando uma ou ambas.

Desgaste por Cavitação - fluxo de entrada restrito para a bomba causa vazios de fluido que implodem, causando choques e ocasionando pequenas quebras na superfície do material.

Desgaste por Fadiga - partículas passando pela folga causam tensão na superfície, que se expande ocasionando escamas devido ao repetido tensionamento da área danificada. **Desgaste Erosivo** - partículas finas em fluxos de alta velocidade do fluido desgasta um canto ou uma superfície crítica.

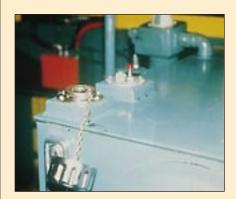
Desgaste Adesivo - perda do filme de óleo permite o contato metal com metal entre superfícies em movimento.

Desgaste Corrosivo - contaminação por água ou química no fluido causa ferrugem ou reação química que degrada a superfície.

Filtragem - Fato

Sinais de Advertência da Contaminação do Sistema

- · Solenóide queimada.
- Descentralização do carretel da válvula, vazamento e trepidação.
- Falha na bomba, perda de vazão e reposições frequentes.
- Vazamento no cilindro e riscos.
- Aumento da histerese da servo.


Filtragem - Fato

A maioria das inserções de contaminantes entra no sistema através das tampas antigas de respiro do reservatório e das vedações da haste do cilindro.

Fontes de Contaminação Externa

Níveis de Inserção para Sistemas Típicos

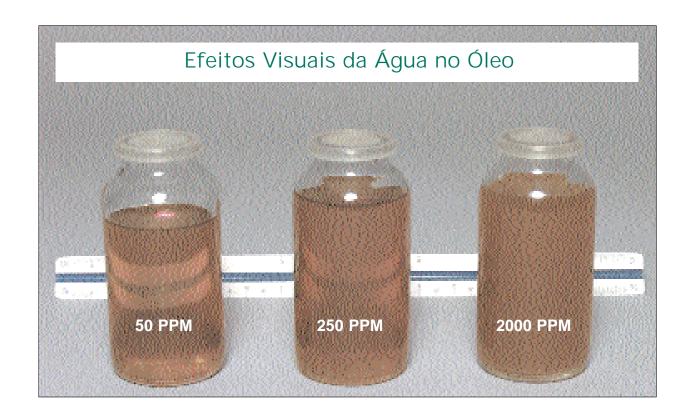
Equipamento Móbil 108-1010 por minuto*

Fábricas de Manufatura 106-108 por minuto*

Linha de Montagem 105-106 por minuto*

* Número de partículas maior que 10 mícrons inseridas no sistema por todas as fontes.

Prevenção


- ▼ Usar filtros unidade-selada para os respiros do ar do reservatório.
- ▼ Limpar todo o sistema antes da partida inicial.
- ▼ Especificar gaxetas e substituir vedações dos atuadores.
- ▼ Aplicar tampões nas mangueiras e manifolds durante manuseio e manutenção.
- ▼ Filtrar todo o fluido antes de colocá-lo no reservatório.

Contaminação da Água

Tipos

Há algo mais para manutenção adequada do fluido do que somente remover o problema de partículas. A água é virtualmente um contaminante universal e, como os contaminantes de partículas sólidas, deve ser removida dos fluidos de operação. A água pode estar no estado dissolvido ou no estado "livre". A água livre, ou emulsificada, é definida como a água acima do ponto de saturação de um fluido específico. Neste ponto, o fluido não pode dissolver ou reter mais água. A água livre geralmente é percebida como uma descoloração "leitosa" do fluido.

Pontos Típicos de Saturação				
Tipo de Fluido	PPM	%		
Fluido Hidráulico	300	.03%		
Fluido Lubrificante	400	.04%		
Fluido de Transformador	50	.005%		

Filtragem - Fato

Um simples " teste de estalo" Ihe dirá se há água livre em seu fluido.

Aplique uma chama em baixo do container. Se borbulhar e houver estalos do ponto onde foi aplicado o aquecimento, a água livre está presente em seu fluido.

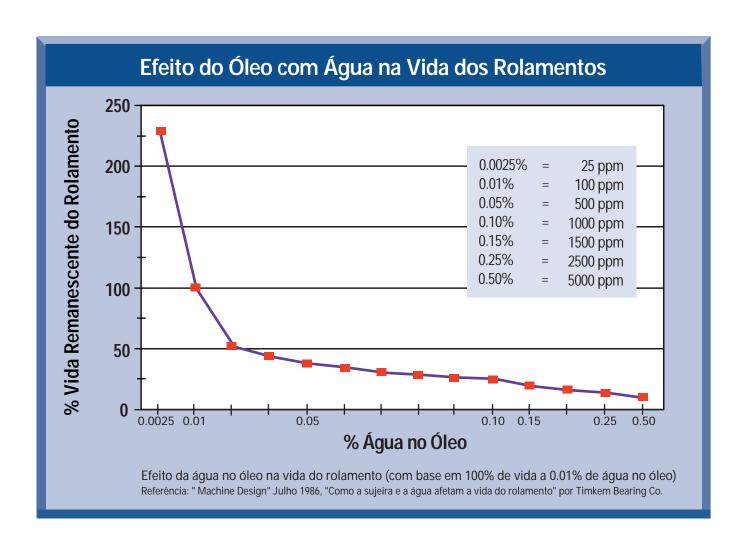
Filtragem - Fato

Os fluidos hidráulicos têm a capacidade de "reter" mais água a medida em que a temperatura aumenta.

Um fluido turvo pode tornar-se claro conforme o sistema for aquecendo-se.

Danos

- ▼ Corrosão das superfícies do metal
- ▼ Desgaste abrasivo acelerado
- ▼ Fadiga do rolamento
- ▼ Falha do aditivo do fluido
- ▼ Variação da viscosidade
- ▼ Aumento na condução elétrica


Aditivos anti-desgaste falham na presença de água e formam ácidos. A combinação de água, calor e metais diferentes encorajam a ação galvénica. Superfícies de metal ponteadas e corroídas como resultado final. Maiores complicações ocorrem quando a temperatura decresce e o fluido tem menos habilidade para reter a água. Quando o ponto de

congelamento é alcançado, forma-se cristais de gelo de uma forma adversa afetando totalmente a função do sistema. As funções de operação podem tornar-se vagarosa ou errante.

A condução elétrica torna-se um problema quando a contaminação da água enfraquece as propriedades de isolação de um fluido, decrescendo assim sua força dielétrica kV.

Resultados típicos de desgaste de bomba devido a partículas e contaminação da água.

Fontes

- ▼ Vedação do atuador desgastado
- Vazamento na abertura do reservatório
- Condensação
- ▼ Vazamento no trocador de calor

Os fluidos estão constantemente expostos a água e vapor de água enquanto são manuseados e armazenados. Por exemplo, é comum em armazenamento externos de tanques e barris. A água pode assentar no topo interno dos containers dos fluidos e cair ao fundo no container durante as mudanças de temperatura. A água também pode ser introduzida quando da abertura ou enchimento destes containers.

A água pode adentrar num sistema através de cilindro desgastado, vedações do atuador ou através de aberturas dos reservatórios. A condensação é também uma fonte primária da água. Como os fluidos resfriam-se em um reservatório ou tanque, o vapor d'água condensará nas superfícies internas causando ferrugem ou outros problemas de corrosão.

Filtragem - Fato

A água livre é mais pesada que o óleo, portanto, assentará no fundo do reservatório, onde a maioria dela poderá ser facilmente removida abrindo-se a válvula dreno.

Filtragem - Fato

Os elementos de filtros de absorção têm ótimo desempenho em aplicações de baixo fluxo e baixa viscosidade.

Prevenção

Normalmente excessiva quantidade de água pode ser removida do sistema. As mesmas medidas preventivas tomadas para minimizar a inserção de partículas sólidas no sistema podem ser aplicadas para a contaminação de água. Entretanto, uma vez que o excesso de água é detectado, ele pode ser eliminado por um dos métodos abaixo:

Absorção

Isto pode ser conseguido por elementos de filtros que são projetados especificamente para retirar água livre. Eles usualmente consistem de um material tipo laminado que transforma a água livre em um gel que é acondicionado dentro do elemento. Estes elementos fixam-se dentro de carcaças

padrão de filtros e são geralmente usados quando pequenos volumes de água estão envolvidos.

Centrifugação

Separa a água do óleo através da centrifugação. Este método também é eficaz somente com água livre mas para grandes volumes.

Desidratação à Vácuo

Separa a água do óleo através de um processo à vácuo e secante. Este método também é para grande volume de água mas é eficaz com os estados livres e dissolvido.

Contaminação do Ar

Tipos

Em um sistema líquido, o ar pode existir tanto no estado dissolvido como livre ou indissolvido. O ar dissolvido pode não acarretar um problema, mantendo-o em solução. Quando um líquido contém o ar indissolvido, problemas podem ocorrer na passagem pelo sistema/componentes. Pode haver alterações de pressão que comprimem o ar e produzam uma grande quantidade de calor em pequenas bolhas de ar. Este calor pode destruir os aditivos e até mesmo o fluido base.

Se a quantidade de ar dissolvido tornar-se alta o suficiente, ocorrerá um efeito negativo na quantidade de trabalho desempenhado pelo sistema. O trabalho desempenhado em um sistema hidráulico baseia-se no fluido ser relativamente incomprimível mas o ar reduz o módulo de elasticidade do fluido. Isto deve-se ao fato de que o ar é até 20000 vezes mais compressível que o líquido onde está dissolvido. Quando o ar está presente, a bomba trabalha mais para comprimir o ar e trabalha menos para o sistema. Nesta situação, o sistema é chamado de "esponjoso".

Danos

- ▼ Perda de força transmitida
- ▼ Redução na saída da bomba
- ▼ Perda de lubrificação
- Aumento da temperatura de operação
- ▼ Espuma do fluido no reservatório
- ▼ Reações químicas

O ar, em qualquer forma, é uma fonte potencial de oxidação nos líquidos. Ele acelera a corrosão das peças de metal, particularmente quando a água também está presente. A oxidação dos aditivos pode também ocorrer. Ambos os processos produzem óxidos que promovem a formação de partículas, ou formam um tipo de lodo no líquido. Desgaste e interferência aumentam se os sedimentos da oxidação não forem prevenidos ou removidos.

Fontes

- **▼** Vazamento no sistema
- ▼ Aeração da bomba
- ▼ Turbulência do fluido no reservatório

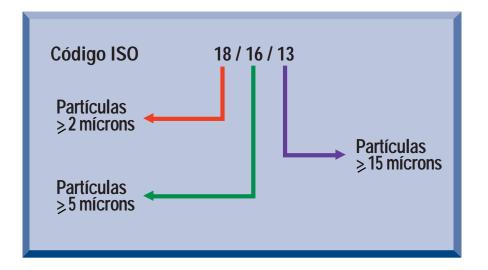
Prevenção

- ▼ Sistema de sangramento do ar
- ▼ Linha de sucção sempre com óleo
- Projeto apropriado para o reservatório
- ▼ Difusores na linha de retorno

Padrões de Limpeza do Fluido

Filtragem - Fato

Saber o nível de limpeza do fluido é a base para as medidas de controle de contaminação.

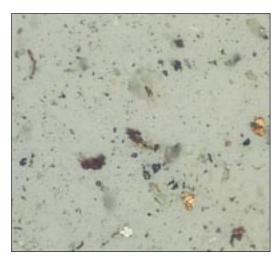

Filtragem - Fato

Os números do índice da
ISO nunca podem aumentar
conforme aumenta o
tamanho das partículas.

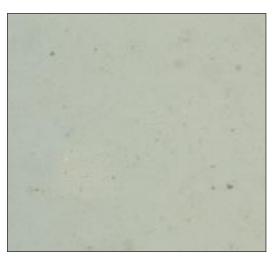
(Exemplo: 18/20/22)

A fim de detectar ou corrigir os problemas, é usada a escala de referência de contaminação. A contagem de partículas é o método mais comum para obter-se níveis de padrão de limpeza. São usados instrumentos ópticos muito sensíveis para contar o número de partículas em várias faixas de tamanho. Estas contagem são reportadas como um número de partículas maiores que um certo tamanho encontradas em um específico volume de fluido.

A ISO 4406 (International Standards Organization), nível padrão de limpeza, tem obtido uma vasta aceitação em muitas indústrias de hoje. Uma versão modificada vastamente utilizada deste padrão, refere-se ao número de partículas maior que 2, 5 e 15 mícrons* em um certo volume, geralmente 1 mililitro ou 100 mililitros. O número de partículas 2+ e 5+ mícrons é usado como ponto de referência para partículas sedimentadas. O tamanho 15+ indica a quantidade de partículas maiores presentes que contribuem grandemente para uma possível falha catastrófica do componente.


Uma classificação ISO de 18/16/13 pode ser definida como:

Faixa	Mícron	Faixa de Contagem
18	2+	1.300 - 2.500
16	5+	320 - 640
13	15+	40 - 80


^{*} Os códigos ISO descritos aqui são para o formato 2, 5 e 15. Um formato 5, 15 mícrons que atualmente atende ao padrão ISO, pode ainda ser usado em algumas publicações (Exemplo: um código ISO de 16/13 referia-se a partículas em faixas de 5+ e 15+ mícrons somente).

Padrões de Limpeza do Fluido

Quadro ISO 4406				
Número de	Número de partículas por ml			
Partículas	Mais de	Até e inclusive		
24	80.000	160.000		
23	40.000	80.000		
22	20.000	40.000		
21	10.000	20.000		
20	5.000	10.000		
19	2.500	5.000		
18	1.300	2.500		
17	640	1.300		
16	320	640		
15	160	320		
14	80	160		
13	40	80		
12	20	40		
11	10	20		
10	5	10		
9	2.5	5		
8	1.3	2.5		
7	.64	1.3		
6	.32	.64		

Fluido ISO 21/19/17 (ampliação 100x).

Fluido ISO 16/14/11 (ampliação100x).

Padrões de Fluido para Limpeza

Filtragem - Fato

Muitos fabricantes de máquinas e componentes hidráulicos especificam um objetivo de nível de limpeza ISO para o equipamento, a fim de alcançar ótimos padrões de desempenho.

Filtragem - Fato

A cor não é um bom indicador do nível de pureza do fluido.

Padrões de Limpeza para o Componente

Muitos fabricantes de equipamentos hidráulicos e rolamentos de carga especificam um ótimo nível de limpeza requerido para seus componentes. Submeter os componentes a um fluido com níveis maiores de contaminação pode resultar em uma vida mais curta para o componente.

Na tabela abaixo veja alguns componentes e seus níveis de limpeza recomendados. É sempre bom consultar o fabricante do componente para obter por escrito as recomendações do nível de contaminação do fluido. Esta informação é necessária para selecionar o nível de filtragem correto. Pode servir também como garantia contra

possíveis reclamações futuras, visto que pode delinear a linha entre o uso normal e operação excessiva ou abusiva.

Limpeza do Fluido Reque Tópicos Componentes Hi	
Componentes	Código
	ISO
Controle de servo válvulas	16/14/11
Válvulas proporcionais	17/15/12
Bombas/motores	
de palheta e pistão	18/16/13
Válvulas de controle	
direcional e pressão	18/16/13
Bombas de engrenagem	
s/ motores	19/17/14
Válvulas de controle de	
fluxo, cilindros	20/18/15
Fluido novo não usado	20/18/15

Padrões de Limpeza para o Componente

Tabela de Correlação dos Níveis de Limpeza							
Cód. ISO	P ≥ 2 Mícrons	Partículas/ Mili ≥5 Mícrons	litros ≥ 15 Mícrons	NAS 1638 (1964)	SAE Nível (1963)		
23/21/18	80.000	20.000	2.500	12			
22/20/18	40.000	10.000	2.500	_	-		
22/20/17	40.000	10.000	1.300	11	_		
22/20/16	40.000	10.000	640	_	-		
21/19/16	20.000	5.000	640	10	_		
20/18/15	10.000	2.500	320	9	6		
19/17/14	5.000	1.300	160	8	5		
18/16/13	2.500	640	80	7	4		
17/15/12	1.300	320	40	6	3		
16/14/12	640	160	40	_	_		
16/14/11	640	160	20	5	2		
15/13/10	320	80	10	4	1		
14/12/9	160	40	5	3	0		
13/11/8	80	20	2.5	2	-		
12/10/8	40	10	2.5	_	_		
12/10/7	40	10	1.3	1	-		
12/10/6	40	10	.64	_	_		

Filtragem - Fato

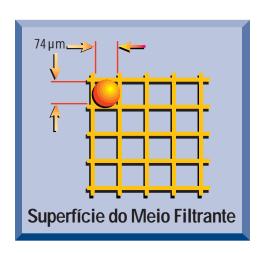
Meio filtrante de superfície pode ser limpo e reutilizado.

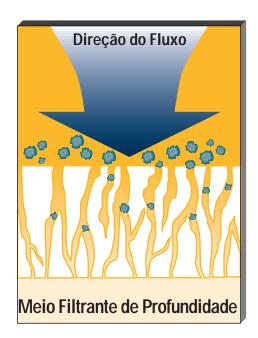
Um equipamento ultra-sônico geralmente é o melhor método. Tipicamente meio filtrante de profundidade não pode ser limpo, nem reutilizado.

O meio filtrante é aquela parte do elemento que remove o contaminante.

Geralmente o meio filtrante vem em forma de folhas e então é plissado para expor mais área da superfície para o fluxo do fluido. Isto reduz a pressão diferencial enquanto aumenta a capacidade de retenção de contaminantes. Em alguns casos, o meio filtrante pode ter camadas múltiplas e telas para atingir certo critério de desempenho. Depois de plissado e cortado no comprimento apropriado, as duas pontas são ligadas usando-se um clipe especial, adesivo ou outro mecanismo selador. O meio filtrante mais comum inclui tela de aço, celulose, compostos da fibra de vidro ou outros materiais sintéticos. O meio filtrante é geralmente classificado de superfície ou profundidade.

Superfície do Meio Filtrante


Para meio filtrante do tipo superficie, o fluido basicamente tem um caminho direto para a passagem do meio filtrante. O contaminante é capturado na superfície do elemento onde passa o fluxo do fluido. Os elementos filtrantes de superfície geralmente são feitos de telas. Visto que o processo usado no entrelaçamento do fio pode ser controlado com acuracidade, os elementos filtrantes de superfície tem um poro de tamanho consistente. Este poro de tamanho consistente é o diâmetro da partícula esférica mais larga que passará através do elemento sob teste em condições específicas. Entretanto, a formação do contaminante superfície do elemento, permitirá ao meio filtrante capturar partículas menores do que a faixa de tamanho do poro.


Da mesma forma, as partículas que têm diâmetro menor mas que podem ser maiores em comprimento (tais como forma de fibra), pode passar para o lado filtrado do meio filtrante.

Meio Filtrante de Profundidade

Para tipos de meio filtrantes de profundidade, o fluido deve tomar caminhos indiretos através do material que forma o meio filtrante. As partículas são depositadas nas aberturas em forma de labirinto por todo o meio filtrante. Por causa de sua construção, um meio filtrante tipo profundo tem muitos poros de vários tamanhos. Dependendo da distribuição dos tamanhos dos poros, este meio filtrante pode ter uma alta faixa de captura de partículas com tamanhos pequenos.

A natureza do meio filtrante e o processo de entrada do contaminante no elemento do filtro explica porque alguns elementos duram muito mais do que outros. Em geral, o meio filtrante contém milhões de pequeníssimos poros formados pelas fibras do meio filtrante. Os poros têm um faixa de diferentes tamanhos e são interconectados por todas as camadas do meio filtrante para formar um caminho tortuoso para o fluxo do fluido.

Os dois tipos básicos de meio filtrante de profundidade, que são usados para elementos de filtros, são celulose e fibra de vidro.

Os poros no meio filtrante de celulose tende a ter uma vasta faixa de tamanhos e são muito irregulares em formas, devido ao tamanho e forma irregulares das fibras.

Em contraste, o meio filtrante de fibra de vidro consiste de vários tamanhos de fibras que são muito uniformes em tamanho e forma. As fibras são geralmente mais finas que as fibras de celulose e têm uma seção circular uniforme. As diferenças típicas das fibras contam para a vantagem de desempenho do meio filtrante de fibra de vidro. Fibras mais finas significam mais poros reais em um dado espaço. Além do mais, fibras mais finas podem ser arranjadas mais perto uma das outras para produzir poros menores para filtragem fina. Como resultado a capacidade de retenção de contaminante, assim como a eficiência da filtragem, são aumentadas.

Construção típica da fibra de vidro grossa (100x)

Construção típica da fibra de vidro fina (100x)

Comparação Geral do Meio Filtrante					
Material do Meio Filtrante	Eficiência de Captura	Cap. de Retenção	Pressão Diferencial	Vida no Sistema	Custo Geral
Fibra de vidro	Alta	Alta	Moderada	Alta	Moderada para alta
Celulose (papel)	Moderada	Moderada	Alta	Moderada	Baixa
Tela	Baixa	Baixa	Baixa	Moderada	Moderada para alta

Filtragem - Fato

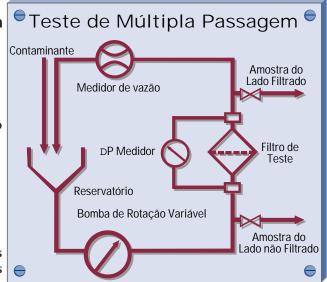
Os níveis de meio filtrante expressos como Razão Beta indicam a eficiência de remoção de partículas do meio filtrante.

Filtragem - Fato

Os resultados do teste de múltipla passagem são muito dependentes das seguintes variáveis:

- Vazão
- · Diferencial de pressão final
- · Tipo de contaminante

O Teste de Múltipla Passagem


A indústria de filtragem usa os procedimentos da ISO 4572 "Procedimento para Teste de Múltipla Passagem" para avaliar o desempenho do elemento de filtro. Este procedimento é também reconhecido pela ANSI* e NFPA**. Durante o Teste de Múltipla Passagem, o fluido circula através do circuito sob condições precisamente controladas e monitoradas. A pressão diferencial pelo elemento

de teste é continuamente anotada, conforme uma quantidade de contaminante constantemente injetado no lado do óleo não filtrado do elemento. Sensores de partículas à laser determinam os níveis de contaminantes no lado filtrado e não filtrado do elemento de teste. Este atributo de desempenho (Razão Beta) é determinado para vários tamanhos de partículas. Três importantes características de desempenho do elemento são resultado do Teste de Múltipla Passagem:

- 1. Capacidade de retenção de contaminante
- Diferencial de pressão de elemento de filtro de teste.
- 3. Eficiência de filtragem ou separação, expressada como "Razão Beta"

Razão Beta

A Razão Beta, também conhecida como a razão filtragem, é a medida da eficiência de captura de partículas por um elemento de filtro. Ela é, portanto, uma razão de desempenho.

Como um exemplo de como a Razão Beta é derivada do Teste de Múltipla Passagem, assuma que 50.000 partículas, 10 mícrons e maiores, foram contadas no lado não filtrado do filtro de teste e 10.000 partículas da mesma faixa de tamanho foram contadas no lado filtrado do filtro de teste. A Razão Beta correspondente seria igual a 5, como visto no seguinte exemplo:

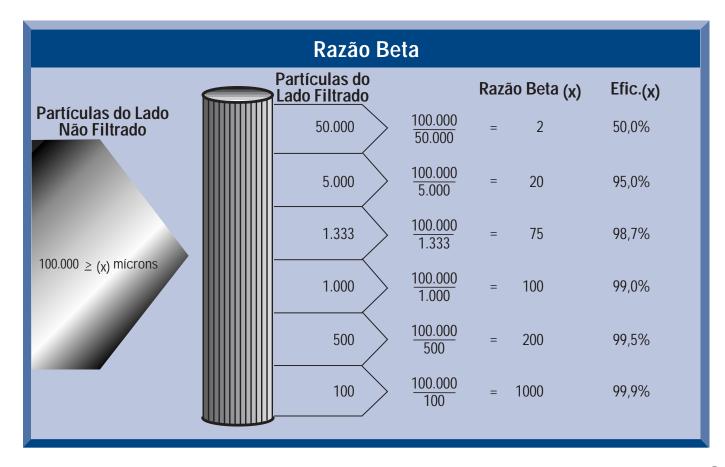
$$B_x = \frac{N^{\circ} \text{ de partículas lado não}}{N^{\circ} \text{ de partículas lado}}$$

$$\text{"x" está em um tamanho de partícula específico}$$

$$B_{10} = \frac{50.000}{10.000} = 5$$

^{*} ANSI - American National Standards Institute

^{**} NFPA - National Fluid Power Association


O exemplo poderia ser lido: Beta 10 é igual a 5. Agora, um número de Razão Beta sozinho significa muito pouco. Ele é um passo preliminar para achar-se a eficiência de captura de contaminante pelo filtro. Esta eficiência, expressada como percentual, pode ser encontrada através de uma simples equação:

Eficiência_X =
$$(1 - \frac{1}{Beta})$$
 100
Eficiência_{y10} = $(1 - \frac{1}{5})$ 100
= 80%

Então, no exemplo, o filtro testado possui 80% de eficiência ao remover

10 mícrons e partículas maiores. Para cada 5 partículas introduzidas no filtro nesta faixa de tamanho, 4 eram retiradas pelo meio filtrante do filtro. A Razão Beta/tabela de Eficiências mostra alguns números Razão Beta comuns e suas correspondentes eficiências.

Razão Beta/Eficiências			
Razão Beta (a um tamanho de partícula estipulado)	Eficiência de separação (o mesmo tamanho de partícula)		
1.01	1,0%		
1.1	9,0%		
1.5	33,3%		
2.0	50,0%		
5.0	80,0%		
10.0	90,0%		
20.0	95,0%		
75.0	98,7%		
100	99,0%		
200	99,5%		
1000	99,9%		

Escolha do Meio Filtrante

Filtragem - Fato

Nao há correlação direta entre usar um meio filtrante específico e atá-lo a uma classificação de limpeza específica ISO.

Outras numerosas variáveis seriam consideradas, tais como ingressão de partículas, o fluxo do fluido pelos filtros e localização dos filtros.

Tabela A

Pressão e Ciclos de Trabalho (Levar em conta a pressão de operação normal e sua oscilação, tanto em magnitude como em frequência).

Pressão: Escolha da pressão de operação **Serviço:**

LEVE Operação contínua em pressão especificada ou menor.

MÉDIO Alterações médias de pressão até a pressão especificada.

PESADA Zero à pressão especificada.

SEVERA Zero à pressão especificada transições em alta frequência (0,6Hz) (exemplo: unidade hidráulica alimentando uma

Pressão			Se	rviço	
PSI	Bar	Lev	Méd.	Pes.	Sev.
0-1015	0-70	1	2	3	4
1015-2175	70-150	1	3	4	5
2175-3625	150-250	2	3	4	6
3625-5075	250-350	3	5	6	7
5075+	350+	4	6	7	8

Tabela B Meio Ambiente

Índice	Nº

prensa perfuradora). Selecione

o índice da tabela abaixo:

	Índice	
Bom	Áreas limpas, laboratórios	0
Médio	Instalações de máquinas em	
	geral, linhas de montagem	1
Pobre	Automotivo, laminadores	
	(metal e papel)	2
Hostil	Fundições, também onde a	
	ingressão de contaminantes	é
	esperada ser muito alta	3

Tabela C Sensibilidade do Componente

•	
Examplos Í	ndice
Servo válvulas de alto desemper	nho 8
Servo válvulas industriais	6
Bombas de pistão, válvulas	
Proporcionais, controles fluxo	
compensados	4
Bombas de palheta, válvulas de	
carretel	3
Bombas de engrenagens, válvul	as
Manuais e válvulas de gatilho	2
Bombas de êmbolo e cilindros	1
	Servo válvulas de alto desemper Servo válvulas industriais Bombas de pistão, válvulas Proporcionais, controles fluxo compensados Bombas de palheta, válvulas de carretel Bombas de engrenagens, válvul Manuais e válvulas de gatilho

Tabela D Indice N° Expectativa de vida

Vida em funcionamento requerida para os componentes

Horas	Índice
0-1.000	0
1.000-5.000	1
5.000-10.000	2
10.000-20.000	3
20.000+	5
	Índice Nº

Tabela E

Responsabilidade Ecônomica do Componente Relaciona o custo da reposição do componente

ı		Exemplos í	ndice		
ı	Muita alta	alta Bombas grandes de pistão, motore			
ı		de baixa velocidade e alto torque	9 4		
ı	Alta	Cilindros, servo válvulas, bombas	;		
ı		de pistão	3		
ı	Média	Linha válvulas montadas	2		
ı	Baixa	Válvulas montadas em sub-base			
١		bombas de engrenagens baratas	1		

Índice Nº

Tabela F

Responsabilidade Ecônomica Operacional Relaciona o custo de parada.

	Exemplos	Índice
Muito alta	Parada muito cara de certos equipamentos de laminação de papel e de aço e	
	equipamento automotivo	5
Alta	Equipamento de	
	produção de altos volumes	3
Média	Crítico, mas equipamento	
	não produtivo	2
Baixa	Equipamento não crítico	
	para produção	1

Índice Nº.

Tabela G

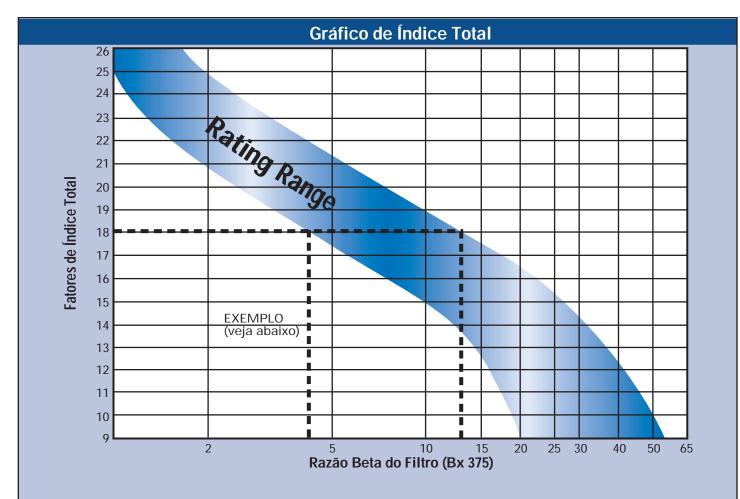
Risco de Segurança

Relaciona a necessidade para segurança adicional de operação

	Exemplos	Índice
Alto	Sistemas de transmissão dos freios para içamento	
	em minas	3
Médio	Onde falha é provável de	
	causar danos	1
Baixo	Alguns bancos de testes	
	de componentes hidráulicos	
	riscos por negligência	0

Índice Nº

Índice total de todas as tabelas


Depois de obter o índice total, adicionando os sete índices individuais das Tabelas A - G, encontre o número no eixo vertical localizado no gráfico de índice total. Desenhe uma linha horizontal do número do índice total para interseccionar a faixa de razão em dois pontos. Leia estes pontos no eixo horizontal para a razão do meio filtrante.

Escolha do Meio Filtrante

Um número inter-relacionado de fatores do sistema, determina o meio filtrante mais adequado para uma aplicação em especial. O seguinte método de escolha de meio filtrante foi desenvolvido pela British Fluid Power Association (B.F.P.A.). Este processo de escolha de meio filtrante usa um sistema de "índice" baseado

na importância relativa dos principais fatores do sistema. Simplesmente adicione os fatores de índice individual das sete tabelas de parâmetros do sistema. Consulte então o "Gráfico de Índice Total" para encontrar a faixa de razão apropriada ao meio filtrante. Esta faixa de razão é baseada na razão do meio filtrante, onde a

Razão Beta é igual a ou maior que 75 (98,7% de eficiência). Deve ser enfatizado que a faixa de razão obtida pode somente ser considerada como uma aproximação. Parâmetros precisos de operação são difíceis para quantificar, tanto pelo usuário como pelo fabricante do equipamento de filtragem.

Exemplo:

Considere uma enorme escavadeira hidráulica operando em uma pedreira. O sistema hidráulico inclui bombas de pistão de pressão compensada e grandes cilindros de levantamento

Pressão de Operação e Ciclo de Trabalho (Tabela A) O sistema opera com o extremo do fluxo e flutuações da pressão em um ciclo que é repetido aproximadamente quatro vezes todo minuto. Por esta razão ele é considerado como "pesado". Índice = 4

Meio ambiente (Tabela B)

O meio ambiente em que esta máquina está trabalhando pode, em tempo seco, estar muito sujo. Ingressões são prováveis de serem muito altas. Índice = 2

Sensibilidade do Componente (Tabela C)

Apesar da maioria dos componentes serem considerados de média sensibilidade, as bombas estão acima da média. **Índice = 4**

Expectativa de Vida (Tabela D)

O uso anual é de 2.000 horas e a expectativa de vida do componente é de 4 anos, portanto, 8000 horas e um **Indice = 2**

Confiabilidade Econômica (Componentes) (Tabela E) Componentes como cilindros de levantamento e bombas variáveis de pistão são muito caras para o usuário final comprar. O custo dos componentes são altos, portanto, **Índice = 3** Responsabilidade Econômica (Operacional) (Tabela F) Custos causados por paradas variam dependendo da situação específica da mina, mas o alto custo de capital do sistema coloca-o na categoria "Alta" e Índice = 3 Risco de Segurança (Tabela G)

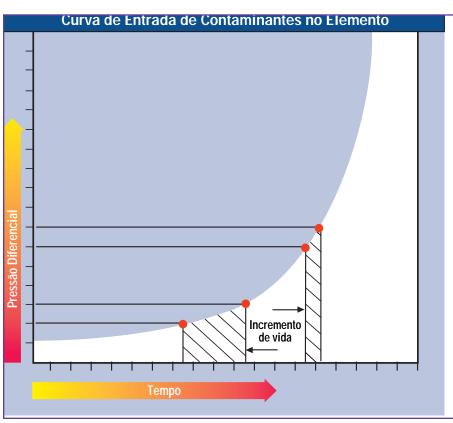
Nenhum adicional para índice de segurança é requerido.

Indice Total (Somatória dos Indices Individuais) =18 A razão selecionada está na faixa de 4 a 13 mícrons. O meio filtrante escolhido deveria ter uma Razão Beta mínima de B_{1,2}=75 (98,7% de eficiência).

Vida do Elemento Filtrante

Filtragem - Fato

Conforme o elemento
filtrante recebe
contaminantes, a pressão
diferencial aumentará no
decorrer do tempo; primeiro
vagarosamente, depois
muito rapidamente, visto
que o elemento está
próximo a sua vida máxima.


Carga de Contaminante

A entrada do contaminante no elemento é simplesmente o processo de bloquear os poros por todo o elemento. Visto que o elemento fica bloqueado com partículas de contaminantes, há poucos poros para o fluxo do fluido e a pressão requerida para manter o fluxo através do meio filtrante aumenta. Inicialmente, a pressão diferencial através do elemento aumenta vagarosamente porque há uma abundância de poros do meio filtrante para o fluido passar, e o processo de bloqueio do poro tem pouco efeito na perda de pressão geral. Entretanto, alcança-se um ponto em que sucessivos bloqueios dos poros do meio filtrante reduzem significativamente o número de poros disponíveis para o fluxo do fluido através do elemento. Neste ponto, a pressão diferencial pelo elemento aumenta exponencialmente. A quantidade, o tamanho, a

forma e o arranjo dos poros através do elemento são algumas razões para alguns elementos terem vidas mais longas que outros.

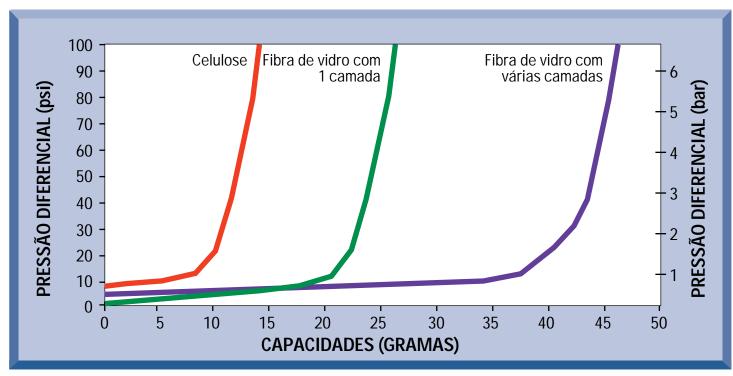
Para uma dada espessura de meio filtrante e nível de filtragem, há menos poros no meio filtrante de celulose do que meio filtrante de fibra de vidro.

O meio filtrante de fibra de vidro com múltiplas camadas, relativamente não é afetado por entrada de contaminante por um longo período. O elemento captura seletivamente as partículas de vários tamanhos, conforme o fluido passa por ele. Os poros muito pequenos no meio filtrante nao são bloqueados por grandes partículas. Estes pequenos poros do lado filtrado permanecem disponíveis para toda a grande quantidade de pequenas partículas presentes no fluido.

Vida do Elemento Filtrante

Perfil da Vida do Elemento

Todo elemento tem uma relação de diferencial de pressão característico versus entrada de contaminante. Este relacionamento pode ser definido como o "perfil da vida do elemento". O perfil real da vida é obviamente afetado pelas condições do sistema operante. Variações no fluxo do sistema e a viscosidade do fluido afetam o diferencial de pressão para o elemento limpo e têm um efeito bem definido sobre o perfil real da vida do elemento.


É muito difícil avaliar o perfil de vida do elemento nos sistemas de operações reais. O sistema operante versus o tempo em operação suave, o ciclo de trabalho e a mudança das condições ambientais de contaminação afetam o perfil de vida do elemento. Além do mais, a instrumentação de alta precisão para

reportar as variações na perda de pressão do elemento está raramente disponível. A maioria dos usuários e projetistas de máquinas simplesmente especificam a carcaça do filtro com indicadores de pressão diferencial para avisar quando o elemento deve ser substituído.

Os dados do Teste de Múltipla
Passagem podem ser usados para
desenvolver o relacionamento do
diferencial de pressão versus a entrada de contaminante, definido como o
perfil de vida do elemento. Como já
mencionado, tais condições de
operação como: vazão de fluxo e
viscosidade do fluido afetam o perfil
de vida para um elemento. As comparações do perfil de vida só podem
ser feitas quando estas condições de
operação são idênticas e os elementos do mesmo tamanho.

Então a quantidade, o tamanho, o formato e a disposição dos poros no elemento determinam o perfil característico de vida. Os elementos que são fabricados de meio filtrante de celulose, meio filtrante de fibra de vidro de uma só camada e de várias camadas, têm todos um perfil de vida diferente. O gráfico comparativo de três meios filtrantes com configurações mais comuns mostra claramente a vantagem de vida do elemento de fibra de vidro de múltiplas camadas.

Comparativo de Vida dos Tipos de Elementos

Filtragem - Fato

Sempre use um indicador de condição do elemento com qualquer filtro, especialmente com aqueles que não têm uma válvula bypass.

Filtragem - Fato

Um elemento carregado de contaminante continuará a aumentar em diferencial de pressão até que:

- O elemento seja substituído.
- · A válvula bypass seja aberta.
- · Ocorra falha do elemento.

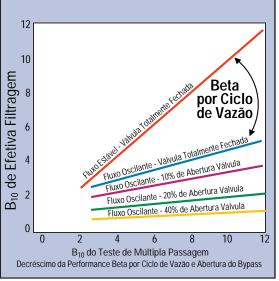
Carcaças do Filtro

A carcaça do filtro é um vaso de pressão que contém o elemento de filtro. Normalmente, consiste de duas ou mais sub-montagens, tais como: uma cabeça (ou tampa) e um copo para permitir o acesso ao elemento. A carcaça tem canais de entrada e saída, permitindo ser instalada em um sistema de fluido. Características adicionais da carcaça podem incluir furos de montagem, válvulas bypass e indicadores da condição do elemento.

Pressão de Trabalho

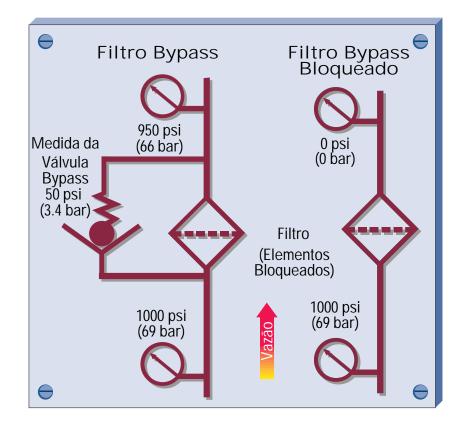
A localização do filtro no circuito é o determinante principal da pressão de trabalho. As carcaças são projetadas genericamente para três localizações em um circuito: sucção, pressão ou linhas de retorno. Uma característica destas localizações é sua pressão máxima de operação. Filtros para sucção e linha de retorno são projetados para pressões mais baixas, até 500 psi (34 bar). As localizações dos filtros de pressão podem

Os conceitos básicos para a escolha da carcaça do filtro inclui métodos de montagem, opções de conexões, opções de indicadores e pressão de trabalho. Todos, com exceção da pressão de trabalho, dependem do design do sistema físico e as preferências do projetista. A pressão de trabalho da carcaça é bem menos arbitrária. Pode ser determinada antes da escolha do tipo de carcaça.


requerer taxas de 1500 psi a 6000 psi (103 a 414 bar). É essencial analisar o circuito para frequentes picos de pressão, assim como condições constantes. Algumas carcaças têm faixas de pressão de fadiga menores ou restritas. Em circuitos com frequentes picos de alta pressão, deve ser usado outro tipo de carcaça para prevenir as falhas relacionadas à fadigas.

A Válvula Bypass (Alívio)

A válvula bypass é usada para prevenir o colapso ou quebra do elemento quando este torna-se altamente carregado de contaminante. Ela também previne cavitação da bomba no caso da linha de sucção. Conforme os contaminantes se acumulam no elemento, a pressão diferencial pelo elemento aumenta. A uma pressão bem mais abaixo do ponto de falha do elemento, a válvula bypass abre-se, permitindo que o fluxo passe pelo elemento.


Alguns tipos bypass têm a opção "bypass ao tanque". Isto permite que o fluxo bypass não filtrado retorne ao tanque através de uma terceira conexão, prevenindo que o fluido não filtrado entre no sistema. Outros filtros podem ser fornecidos

sem a bypass ou com a opção bypass bloqueada. Isto evita que qualquer fluido não filtrado entre no lado filtrado. Em filtros sem válvulas bypass, devem ser usados elementos com resistência ao colapso mais alto, especialmente em filtros de pressão. Aplicações com uso da opção "sem bypass" incluem servo válvulas e outro componente de proteção sensível. Quando especificar um filtro sem bypass, certifique-se de que o elemento tenha faixa de pressão diferencial perto da pressão de operação máxima do sistema. Quando especificar um filtro tipo bypass, é necessário levar em conta que o

fabricante projetou o filtro para suportar a pressão diferencial da válvula bypass quando a mesma se abre.

Após a escolha do tipo de carcaça e da faixa de pressão, deve ser escolhida a válvula bypass. A configuração da válvula bypass deve ser selecionada antes de dimensionar a carcaça. Após tudo ter sido escolhido, deve-se escolher ainda a pressão bypass mais alta disponível pelo fabricante. Isto fornecerá uma vida mais longa ao elemento de um dado tamanho de filtro. Ocasionalmente, pode ser selecionada uma configuração mais baixa para ajudar a minimizar a perda de energia do sistema, ou a reduzir o retorno de pressão em outro componente. Em filtros de sucção, é usada uma válvula bypass de 2 ou 3 psi (0,14 ou 0,2 bar) para minimizar a chance potencial de cavitação da bomba.

Filtragem - Fato

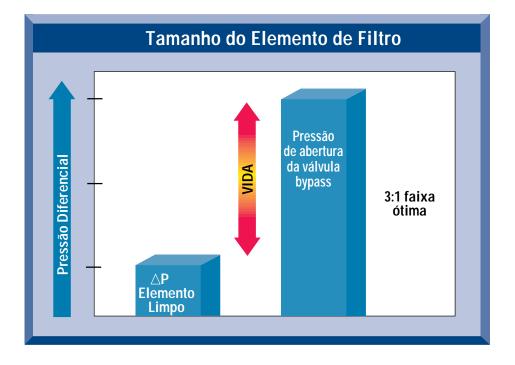
Sempre considere condições de baixa temperatura quando dimensionar filtros.

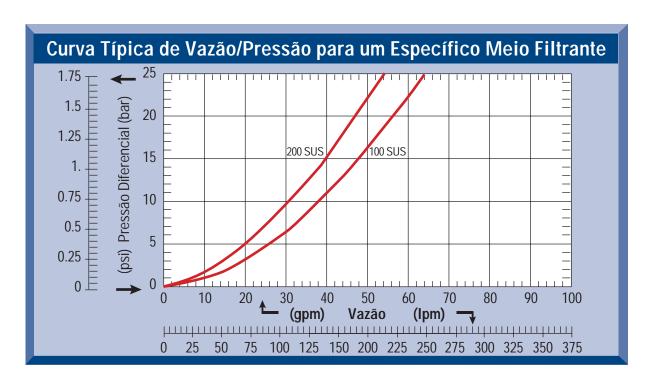
Aumento da viscosidade no fluido pode causar uma considerada elevação no diferencial de pressão através da montagem do filtro.

Filtragem - Fato

O diferencial de pressão em uma montagem de filtro depende de:

- Tamanho do elemento
 e carcaça
- 2. Meio filtrante
- 3. Viscosidade do fluido
- 4. Vazão


Indicadores da Condição do Elemento


O indicador da condição do elemento indica quando o elemento deve ser limpo ou substituído. Geralmente, o indicador tem marcas de calibração que também indicam se a válvula bypass foi aberta. O indicador pode ser ligado mecanicamente à válvula bypass ou pode ser um dispositivo sensitivo de pressão diferencial totalmente independente. Os indicadores podem dar sinais elétricos, visuais ou ambos. Normalmente, os indicadores são configurados para várias indicações até 5-25% antes que a válvula bypass se abra.

Dimensionamento da Carcaça e Elemento

O tamanho da carcaça deve ser o suficiente para alcançar pelo menos uma razão 2:1 entre a configuração da válvula bypass e o diferencial de pressão do filtro com elemento limpo instalado. É preferível que esta razão seja 3:1 ou até mesmo maior para elemento com alta vida.

Por exemplo, o gráfico da próxima página ilustra os tipos de curvas fluxo/diferencial de pressão que são usadas para dimensionar a carcaça. Como pode ser visto, o especificador necessita saber a viscosidade do fluido de operação e a máxima vazão de fluxo (ao invés de uma média) para certificar-se que o filtro não estará operando em uma grande parte do tempo em bypass devido ao aumento do fluxo. Isto é particularmente importante nos filtros da linha de retorno, onde a multiplicação do fluxo dos cilindros pode aumentar o fluxo de retorno comparado com a vazão da bomba.

Se o filtro descrito no gráfico foi configurado com uma válvula bypass de 50 psi (3,4 bar), o diferencial de pressão inicial (limpo) não deve ser maior que 25 psi (1,7 bar) e preferivelmente 16,7 psi (1,1 bar) ou menor. Isto é calculado da razão 3:1 e 2:1 da configuração bypass e do diferencial de pressão inicial.

Razão 3:1

 $\checkmark 50/3 = 16 \% \text{ psid } (1.1 \text{ bar})$

Razão 2:1

- ∇ 50/2 = 25 psid (1.7 bar)
- ▼ Em fluído 200 sus, a faixa máxima de fluxo seria entre 42 gpm e 54 gpm (159 lpm e 204 lpm).

Muitas montagens padrão dos filtros usam uma válvula bypass para limitar queda máxima de pressão pelo elemento. Visto que o elemento torna-se bloqueado com contaminantes, o diferencial de pressão aumenta até que o ponto máximo de pressão da válvula bypass seja atingido. Neste ponto, o fluxo internamente ao filtro não passa pelo elemento de filtro e sim pela válvula bypass. Esta ação limita o diferencial de pressão máximo através do elemento. O tópico importante é que algumas partículas contaminantes do sistema também passam pelo bypass e não pelo elemento. Quando isto acontece, a eficácia do elemento fica comprometida e os níveis de pureza do fluido. Montagens padrão de filtro normalmente tem uma pressão de abertura da válvula bypass entre 25 e 100 psi (1,7 e 6,9 bar).

O relacionamento entre o diferencial de pressão inicial através do elemento limpo e a configuração da pressão da válvula bypass devem ser considerados. Um elemento de celulose tem uma faixa estreita de aumento de pressão exponencial. Por esta razão a relação entre o diferencial de pressão inicial e a configuração da pressão da válvula bypass são muito importantes. Esta relação em vigor determina a vida útil do elemento.

Em contraste, a vida útil dos elementos de fibra de vidro de uma ou multicamadas é estabelecida pela região linear horizontal do aumento de baixa pressão relativa, não a região de aumento de pressão exponencial. Da mesma forma, a pressão da válvula bypass de montagem do filtro, se 25 ou 75 psi (1,7 ou 5,2 bar), tem pouco impacto na vida útil do elemento. Assim, o diferencial de pressão inicial e a configuração da válvula bypass são fatores de dimensionamento a menos quando for considerado um meio filtrante de fibra de vidro.

Filtragem - Fato

Os filtros de tela de sucção geralmente referem-se ao tamanho da "malha":

malha 6560 = 238 mícrons

malha 100 = 149 mícrons

malha 200 = 74 mícrons

Filtragem - Fato

O uso de filtros de sucção e filtros de tela tem decrescido grandemente na filtragem moderna.

Tipos de Filtros e Localizações

▼ Sucção

▼ Retorno

▼ Pressão

▼ Off-line

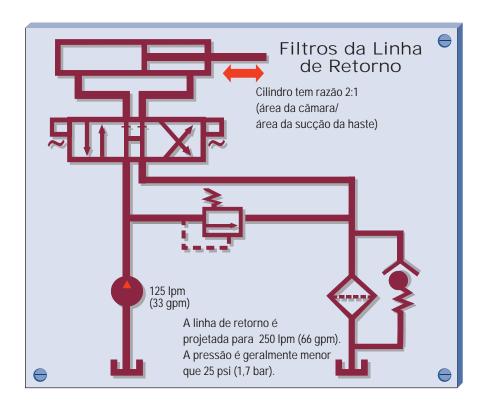
Filtros de Sucção

Os filtros de sucção servem para proteger a bomba da contaminação do fluido. Eles são localizados antes da conexão de entrada da bomba. Alguns podem ser de tela submersos no fluido. Outros podem ser montados externamente. Em ambos os casos eles usam elementos muito abertos, devido aos limites da cavitação das bombas. Por este motivo eles não são

usados como proteção primária contra a contaminação. Alguns fabricantes de bombas não recomen-

dam o uso do filtro de sucção. Consulte sempre o fabricantes de bombas para as restrições da entrada.

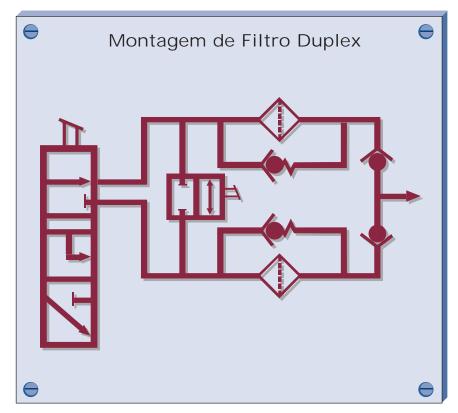
Filtros de Pressão


Os filtros de pressão são localizados após a bomba. São projetados para proteger o sistema de pressão e dimensionados para uma faixa específica de fluxo na linha de pressão.

Os filtros de pressão são adequados especialmente para proteger os componentes sensíveis do lado filtrado do filtro, tais como servo válvulas.

Localizados logo após a bomba, eles também protegem o sistema

todo da contaminação gerada pela bomba.



Filtros de Retorno

Quando a bomba é um componente sensível no sistema, o filtro de retorno pode ser a melhor escolha. Na maioria dos sistemas o filtro de retorno é o último componente pelo qual passa o fluido antes de entrar no reservatório. Assim, captura sedimentos do desgaste dos componentes do sistema e partículas que entram através das vedações do cilindro antes que tais contaminantes possam entrar no reservatório e serem circulados. Uma vez que este filtro é localizado imediatamente acima do reservatório, sua faixa de pressão e custo podem ser relativamente baixos.

Em alguns casos, cilindros com largos diâmetros da haste podem resultar em multiplicação do fluxo. O aumento da faixa do fluxo na linha de retorno pode levar a válvula bypass a ser aberta, permitindo que o fluxo não filtrado passe para o lado filtrado. Isto pode ser indesejável e deve-se tomar cuidado no dimensionamento do filtro.

Ambos os filtros de pressão e retorno podem ser encontrados em uma versão duplex. Sua mais notável característica é a filtragem contínua, a qual é feita com duas ou mais câmaras de filtro e inclui o valvulamento necessário para permitir a filtragem contínua e ininterrupta. Quando um elemento precisa de manutenção, a válvula duplex é acionada, desviando o fluxo para a câmara do filtro oposta. Assim o elemento sujo pode ser substituído, enquanto o fluxo continua a passar pela montagem do filtro. Tipicamente, a válvula duplex previne qualquer bloqueio de fluxo.

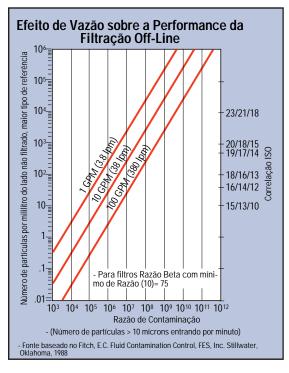
Filtragem - Fato

Dimensione o fluxo da bomba de um pacote off-line a um mínimo de 10% do volume do reservatório principal.

Filtragem - Fato

O nível de limpeza de um sistema é diretamente proporcional à vazão sobre o sistema de filtros.

Filtragem Off-Line


Também referida como recirculagem, ou filtragem auxiliar, este sistema é totalmente independente de um sistema hidráulico principal de uma máquina. A filtragem off-line consiste de uma bomba, filtro. motor elétrico e os sistemas de conexões. Estes componentes são instalados fora da

linha como um pequeno subsistema separado das linhas de trabalho ou incluído em um de resfriamento. O fluido é bombeado fora do reservatório através do filtro e retorna para o reservatório em um ciclo contínuo. Com este efeito "polidor", a filtragem off-line é capaz de manter um fluido em um nível constante de contaminação. Como com o filtro da linha de retorno, este tipo de sistema adequa-se melhor para manter a

pureza, mas não fornece proteção específica aos componentes. Uma circulação contínua da filtragem off-line tem a vantagem adicional de ser relativamente fácil de se adequar em um sistema existente que tenha filtragem inadequada. Mais ainda, a manutenção do filtro pode ser feita sem desligar o sistema principal. Muitos sistemas se beneficiariam grandemente

de uma combinação de filtros de sucção, pressão, retorno e off-line. A tabela da direita pode ajudar na escolha da localização do sistema.

Comparativo dos Tipos de Filtros e Localizações							
Localização Vantagens do Filtro		Desvantagens					
 Sucção (Montado externamente) • Última chance de proteção à bomba • Muito mais fácil de se fazer manutenção do que o de tela no fundo do reservatório. 		 Deve usar meio filtrante relativamente aberto e/ou carcaça grande para manter a queda de pressão baixa devido às condições da entrada da bomba. Custo relativamente alto Não protege os componentes pós bomba dos sedimentos do desgaste da bomba. Pode não ser adequado para bombas com volume muito variáveis. Proteção mínima do sistema. 					
Pressão	 Proteção específica dos componentes Contribui para todo o nível de limpeza do sistema. Pode usar elementos de filtro de alta eficiência e filtragem fina. Captura dos sedimentos do desgaste da bomba. 	 A carcaça é relativamente cara porque deve suportar a total pressão do sistema. Não captura os sedimentos do desgaste dos compo- nentes em trabalho do lado pós-bomba 					
Retorno	 Captura dos sedimentos do desgaste dos componentes e sujeira entrando através da vedação gasta da haste antes que entre no reservatório. Menores faixas de pressão resultam em menores custos. Pode ser na linha ou no tanque para facilitar instalação. 	 Sem proteção para a contaminação gerada pela bomba. O aumento repentino do fluxo da linha de retorno pode reduzir o desempenho do filtro. Sem proteção direta do componente Custo relativo inicial alto. 					
Off-Line	 "Polimento" contínuo do fluido do sistema hidráulico principal, mesmo se o sistema estiver parado. Possibilidade de manutenção sem parada do sistema central. Os filtros não são afetados pelo aumento repentino do fluxo, permitindo ótima vida e desempenho para o elemento. A linha de descarga pode ser direcionada para a bomba do sistema central para fornecer superdescarga com fluido limpo e refrigerado. Níveis de pureza podem ser obtidos e manuseados com precisão. A refrigeração do fluido pode ser facilmente incorporada. 	 Custo relativo inicial alto. Requer espaço adicional. Sem proteção direta ao componente. 					

Análise de Fluido

Filtragem - Fato

O único meio de se saber a condição de um fluido é através da análise do mesmo. O exame visual não é um método preciso.

Filtragem - Fato

Qualquer análise de fluido sempre deve incluir a contagem de partículas e o código ISO correspondentes.

Métodos de Análise de Fluido

- **▼** Teste de Membrana
- ▼ Contador de Partículas Portátil
- Análise de Laboratório

A análise do fluido é a parte essencial de qualquer programa de manutenção. A análise do fluido assegura que o fluido está conforme às especificações do fabricante, verifica a composiçao do fluido e determina seu nível de contaminação geral.

Teste de Membrana

O Teste de Membrana não é nada mais que uma análise visual de uma amostra do fluido. Normalmente compõe-se da tomada de uma amostra do fluido que é passada por um meio filtrante de membrana. A membrana é então analisada por microscópio para cor e conteúdo e comparado aos padrões ISO. Usando-se esta comparação, o usuário pode ter uma estimativa "passa, não-passa" do nível de pureza do sistema.

Um outro uso do teste de membrana menos usado seria a contagem das partículas vistas através do microscópio. Estes números seriam então extrapolados para um nível de pureza ISO.

A margem de erro para ambos os métodos é relativamente alta devido ao fator humano.

Kit Teste de Membrana

Análise de Fluido

Contador de Partículas Portátil

O mais promissor desenvolvimento na análise de fluidos é o contador de partículas a laser portátil. Os contadores de partículas a laser são comparáveis a unidades laboratoriais completas na contagem de partículas menores que a faixa de micronagem 2+. Reforços para esta recente tecnologia inclui: precisão, repetição, portabilidade e agilidade. Um teste geralmente leva menos que um minuto. Os contadores de partículas a laser fornecerão somente contagens de partículas e classificações do nível de pureza. Testes de conteúdo de água, viscosidade e análise espectrométrica poderão requerer uma análise laboratorial completa.

Análise Laboratorial

A análise laboratorial é uma visão completa de uma amostra de fluido. A maioria dos laboratórios qualificados oferecerão os seguintes testes e características como um pacote:

- Viscosidade
- Número de neutralização
- Conteúdo de água
- Contagem de partículas
- Análise espectrométrica (desgaste dos metais e análises suplementares reportadas em partes por milhões, ou ppm)
- Gráficos de tendência
- ▼ Foto micrográfica
- Recomendações

Ao tomar-se uma amostra de fluido de um sistema, deve-se tomar cuidado para que a amostra seja realmente um representativo do sistema. Para isto, o recipiente para o fluido deve ser limpo antes de tomar a amostra e o fluido deve ser corretamente extraído do sistema.

Há uma norma da National Fluid Power Association (NFPA) para a extração de amostras de fluidos de um reservatório de um sistema de fluido hidráulico operante (NFPA T2.9.1-1972). Há também o método da American National Standard (ANSI B93.13-1972) para a extração de amostras de fluidos hidráulicos para a análise de partículas contaminantes. Ambos os métodos de extração são recomendados.

Em qualquer caso, a amostra de um fluido representativo é a meta. As válvulas para retirada de amostra devem ser abertas e descarregadas no mínimo por 15 segundos. O recipiente da amostra deve ser mantido por perto até que o fluido e a válvula estejam prontos para a amostragem. O sistema deve estar a uma temperatura operacional no mínimo por 30 minutos antes que a amostra seja retirada.

Veja um procedimento completo no apêndice.

Apêndice

4. Posicione um recipiente de amostra aprovado debaixo da

- corrente de fluxo para os métodos de válvula acima.
- **5.** Feche o recipiente imediatamente.
- Etiquete com informações importantes conforme o método por válvula de amostragem.
 Nota: Selecione uma

Nota: Selecione uma válvula ou conexão onde a pressão for limitada a 200 psig (14 bar) ou menos.

Com referência ao método a ser usado, observe as regras comuns. Qualquer equipamento que for usado para o procedimento de amostragem do fluido deve ser lavado e enxaguado com um solvente filtrado. Isto inclui bombas à vácuo, seringas e tubos. Seu objetivo é contar somente as partículas que já estão no sistema. Recipientes contaminados e amostras não representativas levarão a conclusões errôneas e custarão mais no decorrer do tempo.

Relatório Laboratorial de Amostra de Múltipla Passagem

Aditivo Anti-Estático no Fluido de Teste Diferencial de Pressão de Término de Teste	Elemento Vazão Fab.Int. Fluido Pressão Diferencial (Final Inicial Carcaça Elemento Iíquido						No do Relatório xxxx Data xx Testado por xxx Amostra no. xxx Contador na-linha Fluido injetado vimétrico (MG/L) Vazão (L/Min) 1226.8 7 Point 1279.4 Average 1253.1 0.453			⁄lin)_	
	% liq.	Tempo	ΔP Filtro/	Gramas Adic.	Fluxo de inj.		•	ima/Abaixo/	'Beta) Ta		n Particula
Valores	Clean		Elem.			4.89	2.22	1.11	7	0.22	0.00
	Fluid	05.4	40.0	111	0.454	8.32	1.75	0.44	0.00	0.00	0.00
% do ∆Psi Liquido	2.5	25.4	10.8 7.6	14.4	0.451	13,178.00 10,168.00 1.30	6,682.00 2,863.00 2.33	2,678.00 340.30 7.85	1,382.00 39.55 34.9	643.30 3.18 200	436.10 0.23 1,900
Duração do teste (minutos)	5	31.1	16.7 13.5	17.7	0.455	14,060.00 11,056.03 1.27	7,214.00 3,391.00 2.13	2,822.00 406.48 6.94	1,427.00 35.91 39.7	673.00 1.59 420	463.20 0.23 2,000
Filtro DPsi	10	35.8	28.3 25.1	20.3	0.455	13,900.00 10,590.00 1.31	7,207.00 3,274.00 2.20	2,817.00 . 395.30 7.13	.Cont. da I	Part. lado i	não filtrado
Elemento DPsi	20	39.0	51.6 48.4	22.1	0.453	14,950.00 9,496.00 1.57	7,833.00 2,869.00 2.73	3,201.00 375.00 / 8.54	Cont. da I	Part. lado f ta	filtrado
Capacidade acumulativa (Gramas)	40	42.6	98.3 95.1	24.2	0.455	12,410.00 7,843.00 1.58	6,696.00 2,277.83 2.94	2,857.00 380.58 9.51	1,495.00 38.83 49.8	700.70 1.82 390	474.68 0.46 1,000
Fluxo de injeçåo	80	45.1	191.6 188.4	25.6	0.453	11,420.00 6,152.00 1.86	6,299.00 1,709.00 3.69	2,768.00 234.30 11.8	1,456.00 32.28 45.1	681.10 5.46 120	469.30 2.50 190
	100	45.9	238.2 235.0	26.1	0.451	11,130.00 6,013.00 1.85	6,136.00 1,690.00 3.63	2,717.00 262.50 10.4	1,427.00 41.14 34.7	669.40 8.87 75.5	460.90 5.23 88.1
			a: Ratio's			1.27	2.13	6.94	32.6	75.5	88.1
	Time Avg. Beta Ratio's				1.36	2.42	7.97	37.2	220	800	
	Capacidade Final (Gramas): Aparente: 26.1 Retido: 25 Razão Beta Mínima por tamanho de partícula durante o teste Média Ponderada de Razão Beta no decorrer do teste por tamanho injetado durante o teste Capacidade Final (Gramas): Aparente: 26.1 Retido: 25 Acumulado de Contaminante calculada de retenção em						ade da de				

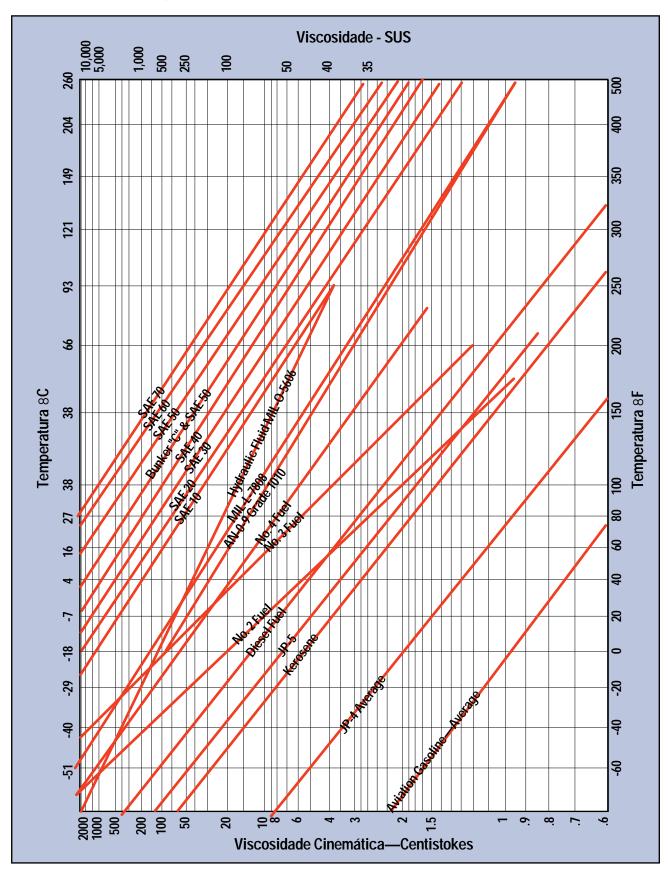

Apêndice

Tabela de Conversão de Viscosidade					
cSt (Centistokes)	SUS (Saybolt Universal Seconds)*				
10	46				
20	93				
25	116				
30	139				
32.4	150				
40	185				
50	232				
70	324				
90	417				
Comparações são feitas 100° F (38° C). Para outras conversões aproximadas: cSt = $\frac{SUS}{4.635}$					
* NOTA: Saybolt universal seconds também pode ser abreviada como SSU.					

Tabela de	Conversão	Métrica	
PARA CONVERTER	EM	MULTIPLIQUE POR	
Polegadas	Milímetros	25.40	
Milímetros	Polegadas	.03937	
Galões	Litros	3.785	
Litros	Galões	.2642	
Libras	Quilogramas	.4536	
Quilogramas	Libras	2.2046	
psi	Bar	.06804	
Bar	psi	14.5	
Centígrado	Fahrenheit	(°C x ⅓) + 32	
Fahrenheit	Centígrado	(°F - 32) /1.8	
Mícrons	Polegadas	.000039	
Mícrons	Metros	.000001	

Apêndice

Viscosidade X Temperatura

Divisão Filtros Via Anhanguera Km 25,3 05275-000 Perus, SP Tel: 11 3917-1407

Fax: 11 3917-1623 www.parker.com.br filtration@parker.com.br

